Mathematical Finance Dylan Possamaï

Recall 3

We fix throughout a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which we are given a complete filtration \mathbb{F} .

Good integrators and stochastic integrals

- 1. Let X be an \mathbb{R} -valued measurable process. For any $t \ge 0$, what is the stochastic integral up to time t with respect to X?
- 2. What is an (\mathbb{F}, \mathbb{P}) -good integrator?
- 3. Let X be an (\mathbb{F}, \mathbb{P}) -good integrator. Is the stochastic integral with respect to X uniquely defined? Which is the linearity property of (\mathbb{F}, \mathbb{P}) -good integrators? Can you provide a proof for both questions?
- 4. Can you give three properties of an (\mathbb{F}, \mathbb{P}) -good integrator? Can you prove them?

Stochastic integrals for unbounded integrands

- 1. Let X be an (\mathbb{F}, \mathbb{P}) -good integrator. What is the class $\mathcal{L}^1(X, \mathbb{F}, \mathbb{P})$ of X-integrable processes?
- 2. Can you show that $\mathcal{L}^1(X, \mathbb{F}, \mathbb{P})$ is a vector space?
- 3. Let X be an (\mathbb{F}, \mathbb{P}) -good integrator. For any $t \ge 0$, what is the stochastic integral up to time t with respect to X?
- 4. Let X be an (\mathbb{F}, \mathbb{P}) -good integrator. Can you show that the stochastic integral on $\mathcal{L}^1(X, \mathbb{F}, \mathbb{P})$ is uniquely defined and linear with respect to its integrand?
- 5. Let X be an (\mathbb{F}, \mathbb{P}) -good integrator, $\xi \in \mathcal{L}^1(X, \mathbb{F}, \mathbb{P})$, and set for any $t \ge 0$, $Y_t := \int_0^t \xi_s dX_s$. Can you show that Y is an \mathbb{F} -adapted process, that the stochastic integral with respect to Y is well-defined over $\mathcal{P}_b(\mathbb{F}, \mathbb{P})$, and satisfies

$$\int_0^t Z_s \mathrm{d}Y_s = \int_0^t Z_s \xi_s \mathrm{d}X_s, \ t \ge 0, \ Z \in \mathcal{P}_b(\mathbb{F}, \mathbb{P}) ?$$

Relatively straightforward properties of stochastic integrals

- 1. When do the stochastic and the classical Lebesgue-Stieljes integrals coincide? Can you prove it?
- 2. Can you give two properties concerning stochastic integrals that are stopped at stopping times?
- 3. How do good integrators and integrable processes behave under localisation?
- 4. Can you state the dominated convergence theorem? Can you prove it?
- 5. Let X be an (\mathbb{F}, \mathbb{P}) -good integrator, let $\xi \in \mathcal{L}^1(X, \mathbb{F}, \mathbb{P})$, and define $Y = \int_0^{\cdot} \xi_s dX_s$. What are the jumps ΔY_t , for $t \ge 0$? What about the continuity and the \mathbb{F} -predictability of Y? Can you provide a proof for the tree questions?

Less straightforward properties of stochastic integrals

1. Can you give a necessary and sufficient condition for a càdlàg, \mathbb{F} -adapted process X to be an (\mathbb{F}, \mathbb{P}) -good integrator?

(Semi-)martingales are good integrators

- 1. Is a càdlàg, (\mathbb{F}, \mathbb{P}) -local martingale an (\mathbb{F}, \mathbb{P}) -good integrator? Can you prove it?
- 2. What is an (\mathbb{F}, \mathbb{P}) -semi-martingale?

Preservation of the local martingale property

- 1. When does a stochastic integral with respect an (\mathbb{F}, \mathbb{P}) -local martingale remain an (\mathbb{F}, \mathbb{P}) -local martingale?
- 2. Let X be an (\mathbb{F}, \mathbb{P}) -local martingale, let $\xi \in \mathcal{L}^1(X, \mathbb{F}, \mathbb{P})$, and define $Y = \int_0^1 \xi_s dX_s$. Can you give three statements equivalent to "Y is an (\mathbb{F}, \mathbb{P}) -local martingale"?

Preservation of the martingale property

- 1. What are the Burkholder-Davis-Gundy inequalities?
- 2. When does a stochastic integral with respect an (\mathbb{F}, \mathbb{P}) -martingale remains an (\mathbb{F}, \mathbb{P}) martingale? Can you prove it?

The general case: σ -martingales

- 1. What is an (\mathbb{F}, \mathbb{P}) - σ -martingale?
- 2. Let X be an (\mathbb{F}, \mathbb{P}) -semi-martingale. Can you give two conditions equivalent to the statement "X is an (\mathbb{F}, \mathbb{P}) - σ -martingale"?
- 3. Which are the conditions under which an (\mathbb{F}, \mathbb{P}) - σ -martingale is an (\mathbb{F}, \mathbb{P}) -local martingale (Ansel-Stricker Lemma)?

Quadratic variations for good integrators

- 1. What is an \mathbb{F} -stochastic partition π of \mathbb{R}_+ ? What is the mesh of a partition?
- 2. Given two processes X and Y, and some \mathbb{F} -stochastic partition of $\mathbb{R}_+ \pi$, what is the quadratic variation of X along π ? What is the quadratic co-variation of X and Y along π ?
- 3. Let X and Y be (\mathbb{F}, \mathbb{P}) -good integrators. What can you say about the limit in the Émery topology of the quadratic (co)-variations when the mesh of any stochastic partitions goes to 0?
- 4. Let X and Y be (\mathbb{F},\mathbb{P}) -good integrators. Can you write the integration by parts formula?
- 5. What is the Kunita-Watanabe inequality?